Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bose, Arpita (Ed.)ABSTRACT Development of genome-editing tools in diverse microbial species is an important step both in understanding the roles of those microbes in different environments, and in engineering microbes for a variety of applications. Freshwater-specific clades of Actinobacteria are ubiquitous and abundant in surface freshwaters worldwide. Here, we show thatRhodoluna lacicolaandAurantimicrobium photophilum, which represent widespread clades of freshwater Actinobacteria, are naturally transformable. We also show that gene inactivation via double homologous recombination and replacement of the target gene with antibiotic selection markers can be used in both strains, making them convenient and broadly accessible model organisms for freshwater systems. We further show that in both strains, the predicted phytoene synthase is the only phytoene synthase, and its inactivation prevents the synthesis of all pigments. The tools developed here enable targeted modification of the genomes of some of the most abundant microbes in freshwater communities. These genome-editing tools will enable hypothesis testing about the genetics and (eco)physiology of freshwater Actinobacteria and broaden the available model systems for engineering freshwater microbial communities. IMPORTANCETo advance bioproduction or bioremediation in large, unsupervised environmental systems such as ponds, wastewater lagoons, or groundwater systems, it will be necessary to develop diverse genetically amenable microbial model organisms. Although we already genetically modify a few key species, tools for engineering more microbial taxa, with different natural phenotypes, will enable us to genetically engineer multispecies consortia or even complex communities. Developing genetic tools for modifying freshwater bacteria is particularly important, as wastewater, production ponds or raceways, and contaminated surface water are all freshwater systems where microbial communities are already deployed to do work, and the outputs could potentially be enhanced by genetic modifications. Here, we demonstrate that common tools for genome editing can be used to inactivate specific genes in two representatives of a very widespread, environmentally relevant group of Actinobacteria. These Actinobacteria are found in almost all tested surface freshwater environments, where they co-occur with primary producers, and genome-editing tools in these species are thus a step on the way to engineering microbial consortia in freshwater environments.more » « lessFree, publicly-accessible full text available November 20, 2025
-
ABSTRACT Termites have a unique ability to effectively digest lignocellulose with the help of mutualistic symbionts. While gut bacteria and protozoa have been relatively well characterized in termites, the virome remains largely unexplored. Here, we report two genomes of microviruses (termite-associated microvirus-1 [TaMV-1] and termite-associated microvirus-2 [TaMV-2]) associated with the gut of Coptotermes formosanus .more » « less
-
null (Ed.)ABSTRACT Microbiology Resource Announcements (MRA) provides peer-reviewed announcements of scientific resources for the microbial research community. We describe the best practices for writing an announcement that ensures that these publications are truly useful resources. Adhering to these best practices can lead to successful publication without the need for extensive revisions.more » « less
An official website of the United States government
